

# Zifu Wan

 <https://zifuwang.github.io/>

 zifuw@andrew.cmu.edu

 (+1) 412-638-9902

## EDUCATION

|                                                                               |                   |
|-------------------------------------------------------------------------------|-------------------|
| <b>Carnegie Mellon University, Pittsburgh, USA</b>                            | 08/2023 – 08/2025 |
| • <i>M.Sc. in Robotics, Robotics Institute, School of Computer Science</i>    | GPA: 4.08/4.0     |
| <b>Dalian University of Technology, Dalian, China</b>                         | 09/2019 – 06/2023 |
| • <i>B.Eng. in Artificial Intelligence, School of Artificial Intelligence</i> | GPA: 89.4/100     |

## WORK EXPERIENCE

|                                                                                                                              |                   |
|------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>Research Engineer in General Robotics</b>                                                                                 | 09/2025 – Present |
| Advisor: Dr. <i>Jonathan Huang</i> ; Topic: <i>Robotics and Artificial Intelligence</i>                                      | Redmond, WA       |
| • Contributed to a cloud platform that hosts different AI models with a unified API call.                                    |                   |
| • Developed vision-language action models for UR robot arms in industrial use cases with high accuracy and speed.            |                   |
| • Integrated GELLO into Isaac Lab for teleoperation data collection.                                                         |                   |
| <b>Research Assistant in Advanced Agent Robotics Technology Lab, Carnegie Mellon University</b>                              | 08/2023 – 08/2025 |
| Advisor: Prof. <i>Katia Sycara</i> , IEEE/AAAI Fellow; Topic: <i>Robust/Distributed Perception</i>                           | Pittsburgh, PA    |
| • Introduced a comprehensive benchmark for task-oriented part segmentation and affordance learning.                          |                   |
| • Developed a Mamba-based fusion method for efficient multi-modal semantic segmentation.                                     |                   |
| • Proposed two training-free algorithms to mitigate hallucinations in large vision-language models.                          |                   |
| <b>Research Intern in AI Innovation Center, Midea Group</b>                                                                  | 02/2023 – 07/2023 |
| Advisor: Dr. <i>Ning Liu</i> ; Topic: <i>Model Compression, Efficient Neural Network Design</i>                              | Beijing, China    |
| • Deployed detection/segmentation/3D reconstruction/Automatic Speech Recognition TVM models on internal platform.            |                   |
| • Designed a light-weight semantic segmentation algorithm with magnitude-based pruning and multi-level distillation.         |                   |
| • Optimized ONNX graph before deploying on NVIDIA Jetson Nano platform with TensorRT acceleration.                           |                   |
| • Won the most accurate with top-5 speed award in <i>2023 Low power Computer Vision Challenge</i> (\$1000 award).            |                   |
| <b>Research Assistant in ME Department, Huazhong University of Science and Technology</b>                                    | 08/2021 – 09/2021 |
| Advisor: Prof. <i>Yihua Kang</i> ; Topic: <i>Signal Processing, Nondestructive Testing (NDT)</i>                             | Wuhan, China      |
| • Studied the relationship between each signal feature and lift-off values extracted from Pulsed Eddy Current (PEC) signals. |                   |
| • Developed a steel hardness classification method by eliminating the lift-off effect with combined signal features.         |                   |
| • Outperformed traditional methods by over 30% in accuracy for hub bearing groove surface hardness classification.           |                   |

## SELECTED PUBLICATIONS (\* indicates equal contribution)

- **Zifu Wan\***, Ce Zhang\*, Silong Yong, Martin Q. Ma, Simon Stepputtis, Louis-Philippe Morency, Deva Ramanan, Katia Sycara, Yaqi Xie. ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models. In *International Conference on Computer Vision (ICCV)*, 2025 [\[PDF\]](#)[\[Code\]](#).
- Ce Zhang\*, **Zifu Wan\***, Zhehan Kan, Martin Q. Ma, Simon Stepputtis, Deva Ramanan, Russ Salakhutdinov, Louis-Philippe Morency, Katia Sycara, Yaqi Xie. Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models. In *International Conference on Learning Representations (ICLR)*, 2025 [\[PDF\]](#)[\[Code\]](#), also at NeurIPS 2024 Workshop RBFM [\[PDF\]](#).
- Silong Yong, Venkata Nagarjun Pudureddiyur Manivannan, Bernhard Kerbl, **Zifu Wan**, Simon Stepputtis, Katia Sycara, Yaqi Xie. OMG: Opacity Matters in Material Modeling with Gaussian Splatting. In *International Conference on Learning Representations (ICLR)*, 2025 [\[PDF\]](#).
- **Zifu Wan**, Pingping Zhang, Yuhao Wang, Silong Yong, Simon Stepputtis, Katia Sycara, Yaqi Xie. Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2025 [\(Oral Presentation\)](#) [\[PDF\]](#)[\[Code\]](#)[\[Website\]](#).
- Ce Zhang, **Zifu Wan**, Simon Stepputtis, Katia Sycara, Yaqi Xie. Spectral-Aware Global Fusion for RGB-Thermal Semantic Segmentation. In *IEEE International Conference on Image Processing (ICIP)*, 2025 [\[PDF\]](#).
- **Zifu Wan**, Yaqi Xie, Ce Zhang, Zhiqiu Lin, Zihan Wang, Simon Stepputtis, Deva Ramanan, Katia Sycara. InstructPart: Task-Oriented Part Segmentation with Instruction Reasoning. In *Association for Computational Linguistics (ACL)*, 2025 [\(Main conference\)](#) [\[PDF\]](#)[\[Website\]](#), also at AAAI Workshop on Public Sector LLMs, 2024 [\[PDF\]](#).
- Tianyu Yan, **Zifu Wan**, Xinhao Deng, Pingping Zhang, Yang Liu, Huchuan Lu. MAS-SAM: Segment Any Marine Animal with Aggregated Features. In *International Joint Conference on Artificial Intelligence (IJCAI)*, 2024 [\[PDF\]](#)[\[Code\]](#).
- **Zifu Wan\***, Tianyu Yan\*, Pingping Zhang, Gong Cheng, Huchuan Lu. TransY-Net: Learning Fully Transformer Networks for Change Detection of Remote Sensing Images. In *IEEE Transactions on Geoscience and Remote Sensing*, 2023 [\[PDF\]](#).

- Tianyu Yan, **Zifu Wan**, Pingping Zhang. Fully Transformer Network for Change Detection of Remote Sensing Images. In *Proceedings of the Asian Conference on Computer Vision (ACCV)*, 2022 (With Student Travel Grant) [\[PDF\]](#)[\[Code\]](#).

## RESEARCH PROJECTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <b>Mitigating Hallucinations in Large Vision Language Models (LVLM) with Generative Feedback</b>                                                                                                                                                                                                                                                                                                                                                     | 07/2024 – 10/2024 |
| <ul style="list-style-type: none"> <li>• Discovered the potential of generative models in mitigating hallucinations in LVLMs at both the response and token levels.</li> <li>• Proposed a training-free algorithm for LVLMs that enhances the accuracy of responses by integrating generative feedback.</li> <li>• Outperformed other methods in five benchmarks, covering wide areas from image captioning to visual question answering.</li> </ul> |                   |
| <b>Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation</b>                                                                                                                                                                                                                                                                                                                                                                            | 02/2023 – 04/2024 |
| <ul style="list-style-type: none"> <li>• Proposed the first successful application of state space models, specifically Mamba, in multi-modal semantic segmentation.</li> <li>• Introduced a Mamba-based fusion method and a channel-aware decoder, to extract and integrate information seamlessly.</li> <li>• Outperformed other methods on four RGB-Thermal and RGB-Depth benchmarks with superior accuracy and efficiency.</li> </ul>             |                   |
| <b>InstructPart: Affordance-based Part Segmentation from Language Instruction</b>                                                                                                                                                                                                                                                                                                                                                                    | 09/2023 – 01/2024 |
| <ul style="list-style-type: none"> <li>• Presented the largest real-world task-oriented part segmentation benchmark with hand-labeled instructions and masks.</li> <li>• Evaluated state-of-the-art vision language models on the benchmark and revealed their limitations.</li> <li>• Developed a baseline method built upon SOTA foundation models, achieving over a 30% improvement in IoU metrics.</li> </ul>                                    |                   |
| <b>Adapting Segment Anything Model to Marine Animal Segmentation</b>                                                                                                                                                                                                                                                                                                                                                                                 | 07/2023 – 11/2023 |
| <ul style="list-style-type: none"> <li>• Developed an adapter-informed SAM Encoder with a hypermap extraction module for marine animal feature extraction.</li> <li>• Proposed a progressive prediction decoder to capture a wide range of global cues and local details.</li> <li>• Consistently outperformed other methods on four marine animal segmentation benchmarks.</li> </ul>                                                               |                   |
| <b>Multimodal Renal Tumor CT Image Detection and Segmentation</b>                                                                                                                                                                                                                                                                                                                                                                                    | 02/2023 – 08/2023 |
| <ul style="list-style-type: none"> <li>• Introduced a large-scale multimodal benchmark (over 20,000 images from four modalities) for renal tumor identification.</li> <li>• Benchmarked fully-supervised detection methods, achieving an average of 71.3% in AP<sub>50-95</sub> metric.</li> <li>• Developed a weakly-supervised method for CT image segmentation for computer-aided diagnosis usage.</li> </ul>                                     |                   |
| <b>Transformer-Based Diffusion Modeling for Change Detection of Remote Sensing Images</b>                                                                                                                                                                                                                                                                                                                                                            | 03/2023 – 07/2023 |
| <ul style="list-style-type: none"> <li>• Developed a Swin-Transformer-based diffusion probabilistic model for remote sensing image feature extraction.</li> <li>• Designed a spatial-aware self-distillation method for multi-level feature enhancement.</li> <li>• Surpassed other methods on three change detection benchmarks, achieving superior remote sensing image generation.</li> </ul>                                                     |                   |
| <b>Fully Transformer Network for Change Detection of Remote Sensing Images</b>                                                                                                                                                                                                                                                                                                                                                                       | 04/2022 – 04/2023 |
| <ul style="list-style-type: none"> <li>• Proposed a learning framework for global feature extraction and multi-level feature combination in a pyramid manner.</li> <li>• Introduced a pyramid structure grafted with a progressive attention module to further improve the feature representation.</li> <li>• Outperformed most SOTA methods on four public change detection benchmarks with superior efficiency.</li> </ul>                         |                   |
| <b>Siamese Attentive Convolutional Network for Effective Remote Sensing Image Change Detection</b>                                                                                                                                                                                                                                                                                                                                                   | 06/2022 – 09/2022 |
| <ul style="list-style-type: none"> <li>• Proposed to jointly utilize channel-wise and spatial-wise attention mechanisms to aggregate multi-level features.</li> <li>• Introduced a method to select more discriminating features in a feature difference view during the decoding phase.</li> <li>• Outperformed SOTA methods on three change detection benchmarks across five metrics.</li> </ul>                                                   |                   |
| <b>Semantic Map Construction for Outdoor Mobile Robots</b>                                                                                                                                                                                                                                                                                                                                                                                           | 08/2022 – 02/2023 |
| <ul style="list-style-type: none"> <li>• Implemented Simultaneous Localization and Mapping (SLAM) algorithms on the robotic operating system.</li> <li>• Designed a derivative algorithm of LeGO-LOAM to enhance the feature-matching phase with extra semantic information.</li> <li>• Deployed the algorithm to a Robomaster AI robot and reached better performance in the mapping process.</li> </ul>                                            |                   |
| <b>Hand Gesture Controlled Robot Car Based on NVIDIA Jetbot platform</b>                                                                                                                                                                                                                                                                                                                                                                             | 11/2021 – 12/2021 |
| <ul style="list-style-type: none"> <li>• Embedded a gesture recognition algorithm (based on ResNet) in the NVIDIA Jetson Nano platform.</li> <li>• Introduced a hand gesture analysis method with real-time image thresholding and key-point extraction.</li> <li>• Deployed the designed algorithm on an NVIDIA JetBot car, achieving 100% success in gesture control.</li> </ul>                                                                   |                   |

## PERSONAL SKILLS

- **Computer Skills:** Python, C++, ROS, Linux, L<sup>A</sup>T<sub>E</sub>X, Git, Overleaf, Markdown
- **Professional Skills:** Pytorch, OpenCV, ONNX, PyTorch Lightning, TensorRT, Hugging Face

## ACADEMIC SERVICES

- Journal Reviewer: *TPAMI*, *IJCV*, *TCSV*
- Conference Reviewer: *NeurIPS 2025*, *IROS 2025*, *BMVC 2025*, *ICASSP 2025*, *WACV 2025*, *MM 2024*, *ICME 2024*