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Supplementary Material

A. Experimental Details

During training, we perform data augmentation, in-
cluding random flipping and scaling with random scales
[0.5, 1.75], to all datasets. We adopt VMamba [9] pre-
trained on ImageNet [11] as the backbone, which includes
three versions, namely VMamba-Tiny, VMamba-Small,
and VMamba-Base. The detailed settings of the three mod-
els are listed in Table A1. We select AdamW optimizer [6]
with weight decay 0.01. The original learning rate is set
to 6e−5 and we employ a poly learning rate schedule with
10 warm-up epochs. We use cross-entropy as the loss
function. When reporting testing results on NYU Depth
V2 [12] and SUN RGB-D [13] datasets, we use multi-
ple scales {0.75, 1, 1.25} according to most previous RGB-
Depth semantic segmentation methods [8,20]. We use mean
Intersection over Union (mIoU) averaged across semantic
classes as the evaluation metric to measure the segmenta-
tion performance. For each of the datasets, more imple-
mentation details are described as follows.

MFNet dataset. The tiny and small backbones are trained
on four 3090Ti GPUs and the base backbone is trained on
four A6000 GPUs. We use the original image size of 640×
480 for training and inference. The batch size is set to 8 for
training. A single 3090Ti GPU is used for inferencing all
the models.

PST900 dataset. The tiny and small backbones are trained
on two A6000 GPUs. We use the original image size of
1280× 720 for training and inference. The batch size is set
to 4 for training. A single A6000 GPU is used for inferenc-
ing all the models.

NYU Depth V2 dataset. Unlike other methods [2,8] to use
HHA format of depth images for training, we directly use
raw depth images and we found no apparent performance
difference between the formats. We take the whole image
with the size 640×480 for training and inference. 4 3090Ti
GPUs are used to train the tiny and small backbones with
batch size 8, and 4 A6000 GPUs are used to train the base
model.

SUN-RGBD dataset. Unlike previous methods which use
larger resolution input (730×530 [16,20] or 640×640 [1]),
we adopt the input resolution of 640×480 and keep the
same training settings as NYU Depth V2 dataset. We also
use raw depth images instead of HHA format for training.

Backbone
VSS Block Number Embedded

DimensionStage 1 Stage 2 Stage 3 Stage 4

VMamba-Tiny 2 2 9 2 96
VMamba-Small 2 2 27 2 96
VMamba-Base 2 2 27 2 128

Table A1. Details about three versions of backbone.

B. Daytime and Nighttime Performance
To explore the effectiveness of our method on daytime

and nighttime RGB-T images, we use the MFNet [4] dataset
and follow CMX [8] to use 205 daytime images and 188
nighttime images in the test set for evaluation. As shown
in Table B2, our method delivers better results on both day-
time and nighttime results, demonstrating the effectiveness
of our proposed method.

Method Modal Daytime Nighttime

FRRN [10] RGB 40.0 37.3
DFN [19] RGB 38.0 42.3

BiSeNet [18] RGB 44.8 47.7
SegFormer-B2 [17] RGB 48.6 49.2
SegFormer-B4 [17] RGB 49.4 52.4

MFNet [4] RGB-T 36.1 36.8
FuseNet [5] RGB-T 41.0 43.9
RTFNet [14] RGB-T 45.8 54.8
FuseSeg [15] RGB-T 47.8 54.6
GMNet [21] RGB-T 49.0 57.7

CMX (MiT-B2) [8] RGB-T 51.3 57.8
CMX (MiT-B4) [8] RGB-T 52.5 59.4

Sigma (VMamba-T) RGB-T 54.1 59.0
Sigma (VMamba-S) RGB-T 55.0 60.0
Sigma (VMamba-B) RGB-T 54.1 60.9

Table B2. Performance comparison on daytime and nighttime
MFNet [4] dataset. We use mIoU (%) for evaluation.

C. Ablation Studies
Apart from the ablation studies on the effect of each of

our components, we further conduct experiments on the de-
tailed design of the State Space Models. In Table C3, we
compare the effect of the state size in State Space Models
and the number of CVSS blocks in our Mamba decoder.
From the table, we can find that setting the state size to 4
and the decoder layers to [4,4,4] leads to the optimal result.



# Encoder State Size Decoder Layers mIoU (∇)

1 VMamba-T 4 [4, 4, 4] 60.5 (0.0)
2 VMamba-T 4 [3, 3, 3] 60.2 (0.3)
3 VMamba-T 4 [2, 2, 2] 59.4 (1.1)
4 VMamba-T 8 [4, 4, 4] 60.3 (0.2)
5 VMamba-T 16 [4, 4, 4] 59.7 (0.8)

Table C3. Ablation studies of decoder layers and the space size of
the state space models on the MFNet [4] dataset.

D. Complexity Comparison of CroMB and
Self-Attention

c

Figure D1. Comparative analysis of complexity across different
fusion methods utilizing Transformer and Mamba: Mamba-based
fusion approaches significantly reduce complexity by an order of
magnitude compared to their Transformer-based counterparts.
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Figure D2. Qualitative computation comparison of Concat Self-
Attention (ConSA) and our Concat Mamba (ConM) mechanism.

As shown in Fig. D1, we compare the theoretical com-
plexity of fusion methods using Mamba and Transformer.
This shows the linear scalability advantage of Mamba over
quadratic Transformer-based methods. In Fig. D2, we illus-
trate the qualitative growth in FLOPs as the input sequence
length increases. It is evident that our ConM mechanism has
much less computation consumption than constituting the
State Space Model with Self-Attention. This underscores

the exceptional efficiency of our proposed ConM in inte-
grating multi-modal features.

Stage
Feature Size FLOPs (G)

Height Weight Channel ConM ConSA

1 120 160 96 1.82 –
2 60 80 192 1.71 77.89
3 30 40 384 1.65 15.94
4 15 20 768 1.62 8.19

Table D4. Quantitative comparison of computation complexity be-
tween Concat Self-Attention (ConSA) and our proposed Concat
Mamba (ConM) mechanism.

In Table D4, we compare the floating-point operations
per second (FLOPS) of our proposed ConMB and Con-
cat Mamba (ConSA), which employs self-attention instead
of SSM. The “Stage” column indicates the four encoding
stages, with the input feature size for each fusion block also
provided. The findings reveal that ConMB maintains low
FLOPs across all stages, whereas the FLOPs for the self-
attention mechanism escalate significantly with increases in
height and width.

E. Limitations and Future Work

While Sigma has achieved outstanding results in vari-
ous RGB-X semantic segmentation tasks, two main limita-
tions remain. 1) Underutilization of Mamba for Longer Se-
quences: Mamba’s capability to handle extremely long se-
quences is a significant advantage, particularly beneficial in
fusion tasks involving more than two modalities. However,
our current exploration primarily focuses on the application
of Mamba for two modalities, potentially not fully leverag-
ing its capacity for modeling longer sequences. Future work
will aim to investigate Mamba’s performance on datasets
with a greater variety of modalities, such as the DELIVER
benchmark. This exploration is pivotal for advancing re-
search on enabling autonomous agents to navigate environ-
ments using multiple sensors, including RGB, depth, ther-
mal, and LiDAR. 2) Memory Consumption in the Mamba
Encoder: The Mamba encoder scans image features from
four directions, allowing each pixel to assimilate informa-
tion from its surrounding pixels. This approach, however,
quadruples memory usage, posing a challenge for deploy-
ment on lightweight edge devices. Future endeavors will
seek to incorporate positional information through alterna-
tive methods, such as positional encoders, and employ a 1D
SSM to diminish computational and memory demands.

F. More Qualitative Results

In Fig. F3 and Fig. F4, we show more qualitative results
of our method compared to others.
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Figure F3. Qualitative comparison on MFNet [4] dataset. More qualitative results can be found in the appendix.
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