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Abstract

Recent Large Vision-Language Models (LVLMs) have in-
troduced a new paradigm for understanding and reason-
ing about image input through textual responses. Although
they have achieved remarkable performance across a range
of multi-modal tasks, they face the persistent challenge of
hallucination, which introduces practical weaknesses and
raises concerns about their reliable deployment in real-
world applications. Existing work has explored contrastive
decoding approaches to mitigate this issue, where the out-
put of the original LVLM is compared and contrasted with
that of a perturbed version. However, these methods require
two or more queries that slow down LVLM response gener-
ation, making them less suitable for real-time applications.
To overcome this limitation, we propose ONLY, a training-
free decoding approach that requires only a single query
and a one-layer intervention during decoding, enabling ef-
ficient real-time deployment. Specifically, we enhance tex-
tual outputs by selectively amplifying crucial textual infor-
mation using a text-to-visual entropy ratio for each token.
Extensive experimental results demonstrate that our ONLY
approach consistently outperforms state-of-the-art methods
across various benchmarks while requiring minimal imple-
mentation effort and computational cost. Code is available
at https://github.com/zifuwan/ONLY .

1. Introduction
Recent advances in large vision-language models

(LVLMs), which expand the capabilities of large lan-
guage models (LLMs) to visual understanding and reason-
ing [1, 17, 35], have demonstrated exceptional performance
across various vision-language tasks, such as object detec-
tion [34, 38] and image captioning [20, 27]. However, a
persistent challenge with current LVLMs is their tendency
to generate hallucinated content, where the generated re-
sponses do not align accurately with the actual image in-
put [24]. This can significantly impact the reliability of
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Figure 1. Comparisons of accuracy and speed of multiple hal-
lucination mitigation methods. The size of bubbles stands for
the GPU memory consumption. Our method mitigates hallucina-
tion with only 0.07× extra time.

LVLMs in real-world applications where precise visual in-
terpretation is essential [2, 4, 24]. Therefore, addressing
hallucinations in LVLMs is crucial to ensuring their safe
and effective deployment in critical domains.

To alleviate the hallucination problem, early work iden-
tified biased training sets as a critical cause and, as a result,
attempted to establish curated training datasets and adopt
robust fine-tuning techniques [6, 30, 40]. However, their re-
liance on additional data and the need for fine-tuning large-
scale models make these approaches time-consuming and
impractical for individual users. Another common approach
is contrastive decoding [18], which eliminates the need for
costly training by directly intervening in the decoding pro-
cess during inference. Specifically, these methods typically
introduce a distorted set of inputs, and contrast their re-
spective token predictions with the predictions from origi-
nal data to mitigate undesired hallucinations [9, 11, 16, 33].
Although existing contrastive decoding-based approaches
achieve notable performance improvements, they require
multiple LVLM queries to process both the original and dis-
torted inputs, resulting in response times that are twice as
long, or more, making them less suitable for real-time ap-
plications [5, 11, 16].

https://github.com/zifuwan/ONLY


To illustrate this, we analyze the performance-efficiency
trade-off of existing approaches for mitigating hallucina-
tions in LVLMs and present the results in Figure 1. As
we can see, while other hallucination mitigation methods
achieve higher accuracy on the hallucination evaluation
benchmark, they come at a significant cost, requiring 2×
or more inference time and higher GPU memory consump-
tion. We recognize this overhead is impractical given the
limited performance improvements, highlighting the urgent
need for more efficient approaches that can effectively mit-
igate hallucinations in LVLM.

In this work, we introduce ONLY, a training-free ap-
proach that requires only a single query and a one-layer
intervention during decoding, offering an efficient solution
for mitigating hallucinations in LVLMs. Our ONLY ap-
proach selects attention heads that prioritize textual infor-
mation over visual information—specifically, those with a
high text-to-visual entropy ratio—to stimulate textually en-
hanced next-token predictions. The enhanced output is then
adaptively contrasted/collaborated with the original output
logits using a single-layer intervention, aiming to reduce
predominant and irrelevant language bias. Our ONLY ap-
proach is both simple and effective, requiring just one addi-
tional attention layer computation. It incurs a modest 1.07×
increase in inference time with negligible GPU memory
overhead, significantly lower than the 2× or more increase
seen in previous contrastive decoding methods. More-
over, ONLY achieves superior performance across multiple
benchmarks, outperforming the current state-of-the-art by
3.14% on POPE and 1.6% on CHAIR.

To validate the effectiveness of our proposed ONLY
approach, we evaluate it on three LVLMs (i.e., LLaVA-
1.5 [22], InstructBLIP [10], and Qwen-VL [1]) across
various benchmarks, including POPE [19], CHAIR [27],
MME-Hallucination [12], MMBench [25], MM-Vet [37],
and MMVP [31]. Extensive experimental results demon-
strate that our ONLY approach consistently outperforms
state-of-the-art methods across these benchmarks while re-
quiring minimal implementation effort and computational
cost. Additionally, qualitative case studies and GPT-4V-
aided evaluations on LLaVA-Bench further validate the ef-
fectiveness of our ONLY approach in enhancing the coher-
ence and accuracy of LVLM responses.

Our contributions are summarized as follows:
• We investigate and challenge the performance-efficiency

trade-off of existing contrastive decoding approaches for
mitigating hallucinations in LVLMs, highlighting the ef-
ficiency issues.

• We present ONLY, a novel training-free decoding algo-
rithm that leverages a single additional Transformer layer
to improve the accuracy of LVLM responses.

• We conduct comprehensive experiments across various
benchmarks and demonstrate that our proposed ONLY

consistently outperforms existing approaches with min-
imal implementation effort and computational cost.

2. Related Work

Large Vision-Language Models (LVLMs). Recently,
large-scale LLMs have demonstrated remarkable pro-
ficiency in handling human queries and exhibit robust
linguistic capabilities [8, 32]. Leveraging these powerful
models, researchers are exploring ways to align the vi-
sual modality with language, unlocking advanced visual
recognition and reasoning capabilities across various multi-
modal tasks [2, 24]. For example, LLaVA-1.5 [21] employs
a pre-trained CLIP ViT-L/14 [26] as the vision encoder,
and trains a linear mapping layer to connect the vision
and language modalities. In contrast, InstructBLIP [10]
builds on a pre-trained BLIP-2 [17] and incorporates
an instruction-aware Q-Former module to bridge the
modalities. Despite their exceptional multi-modal perfor-
mance, these LVLMs still suffer from hallucinations, often
generating text responses that do not accurately reflect
the given image input [3, 4, 30, 39]. Such hallucinations
pose significant challenges for deploying these models in
real-world applications. In this work, we propose a novel,
training-free algorithm designed to mitigate hallucinations,
thereby enhancing the practical deployment of LVLMs in
real-world scenarios.

Hallucination in LVLMs. Recent studies have revealed
that LVLMs may generate cross-modal inconsistencies be-
tween visual inputs and their corresponding responses, i.e.,
hallucinations, which can lead to misinformation and per-
formance degradation [16, 24]. To mitigate these hallucina-
tions, early works have explored the use of additional robust
instruction tuning on curated datasets [3, 15, 30]. While
effective, these methods require extensive and costly train-
ing, making them impractical for individual users. More re-
cently, researchers have explored an alternative approach by
developing variant methods based on contrastive decoding
strategies, which mitigate hallucinations and enhance co-
herence by contrasting logits from counterpart outputs [7,
11, 16]. However, we recognize that these methods require
two or even multiple queries, which slows down LVLM
response generation, making them less suitable for real-
time applications. In response, we propose ONLY, a con-
trastive decoding-based approach that requires only a one-
time query and a one-layer intervention during decoding,
achieving competitive performance while effectively mini-
mizing implementation efforts and computational costs.

3. Method

In this work, we present ONLY, a training-free algorithm
that uses only one Transformer layer to improve the accu-
racy of LVLM responses, as illustrated in Figure 2.
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Figure 2. Overview of our proposed ONLY. Our method retains the core decoding process of LVLMs but incorporates a textual-enhanced
multi-head attention layer with a residual connection to the last layer’s output. This adjustment aims to produce an output with a greater
focus on textual information. The resulting textual-enhanced logits are then adaptively decoded alongside the original output, employing
either contrastive or collaborative decoding strategies to optimize performance.

3.1. Preliminaries

LVLM Decoding. Recent LVLMs effectively process
both visual and linguistic data using three key components:
vision encoders, connectors, and a Large Language Model
(LLM). An LVLM, parameterized by θ, autoregressively
generates a fluent textual response sequence y from an in-
put image v and a textual query x. Initially, v is processed
by a vision encoder and transformed into visual tokens via
a vision-language alignment module (e.g., Q-Former [17]
or linear projection [21]). These tokens, combined with the
query tokens, are input to the LLM. The generation of each
token yt in the sequence y is modeled as:

yt ∼ pθ(yt|v,x,y<t) = softmax(fθ(yt|v,x,y<t))yt
, (1)

where yt ∈ S is the current token, y<t = [y0, . . . , yt−1] are
the previously generated tokens, and fθ represents the logits
over a vocabulary set S.

Transformer Decoder. The language model is struc-
tured as a Transformer, where a sequence of tokens
{x1, x2, . . . , xt−1} are initially embedded into a sequence
of hidden states H0

t−1 = {h0
1, . . . , h

0
t−1}. The Transformer

comprises L layers, each layer incorporates a Multi-Head
Attention (MHA) module and a Multi-Layer Perceptron
(MLP). At time step t, the output of each layer Hℓ+1

t is
derived from the hidden states inputHℓ

t , employing two pri-
mary residual connections:

H̄ℓ
t = MHAℓ(Hℓ

t)+Hℓ
t , Hℓ+1

t = MLPℓ(H̄ℓ
t)+H̄ℓ

t . (2)

Each MHA module consists of H attention heads that com-
pute self-attention, where the attention score is derived from
query, key, and value matrices. Specifically, for the i-th

head in layer ℓ, the operation is given by:

Headℓ,i(Hℓ
t) = Attention(Qℓ,i,Kℓ,i, Vℓ,i)

= softmax

(
Qℓ,i ·K⊤

ℓ,i√
dk

)
Vℓ,i, (3)

where Qℓ,i/Kℓ,i/Vℓ,i = Hℓ
tW

Q/K/V
ℓ,i , are query/key/value

matrices obtained from learned weights. The outputs from
all H heads are then concatenated and projected using an
projection matrix WO

ℓ :

MHAℓ(Hℓ
t) =Concat(Headℓ,1(Hℓ

t),

Headℓ,2(Hℓ
t), . . . ,Headℓ,H(Hℓ

t))W
O
ℓ . (4)

At last, a projection head ϕ(·) predicts the logits of the next
token xt over the vocabulary set S:

fθ(yt|y<t) = ϕ(HL
t ), yt ∈ S. (5)

Combining Eq. 5 with Eq. 1, we finally obtain:

pθ(yt|v,x,y<t) = softmax(ϕ(HL
t ))yt

. (6)

3.2. One Layer Intervention for Textual Enhance-
ment

Previous contrastive decoding methods focus primarily
on the visual modality or the effect of visual input on
the textual modality: e.g., VCD [16] contrasts the out-
puts obtained with original vs. visual distorted input, and
M3ID [11] amplifies the influence of the reference image
over the language prior. However, the effect of textual
modality has been less studied. In this work, we propose
to address hallucination by directly producing textually-
enhanced outputs with minimal additional computational



Algorithm 1 Predict Textual-Enhanced (TE) Logits

Require: Initial hidden statesH0
t , total transformer layers L, total

attention heads H , layer index for textual enhancement ℓ̃.
1: procedure PREDICT TE LOGITS(A)
2: for ℓ ∈ {0, 1, 2, . . . , L− 1} do
3: for i ∈ {0, 1, . . . , H − 1} do
4: Step 1: Calculate TE attention output
5: if ℓ = ℓ̃ then
6: H̃ℓ̃

t ← TE-MHAℓ̃(H
ℓ̃
t) ▷ Equation 13

7: end if
8: end for
9: Step 2: Calculate Transformer output for each layer

10: H̄ℓ
t ← MHAℓ(Hℓ

t) +Hℓ
t ▷ Equation 2

11: Hℓ+1
t ← MLPℓ(H̄ℓ

t) + H̄ℓ
t ▷ Equation 2

12: if ℓ = L− 1 then
13: Step 3: Calculate TE Transformer output
14: ¯̃HL−1

t ← H̃ℓ̃
t +HL−1

t ▷ Equation 15
15: ĤL

t ← MLPL−1(
¯̃HL−1
t ) + ¯̃HL−1

t ▷ Equation 16
16: end if
17: end for
18: Step 4: Calculate original logits and TE logits
19: Logits = fθ(yt|v,x,y<t))← Linear(HL

t )
20: Logits TE = f̂θ(yt|v,x,y<t))← Linear(ĤL

t +HL
t )

21: return Logits, Logits TE
22: end procedure
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Figure 3. Impact of applying diffusion noise on textual and
visual attention entropy. We perform an analysis on all COCO
samples from the POPE benchmark and observe that as distortion
increases, textual entropy rises whereas visual entropy decreases.

overhead. Specifically, inspired by information theory [29],
we introduce an attention-head selection strategy guided by
the text-to-visual entropy ratio. As illustrated in Figure 3,
we observe that when the distortion escalates (similar to the
diffusion steps in VCD), textual entropy increases while vi-
sual entropy decreases. Guided by this observation, we pro-
pose to directly select attention heads with a higher text-to-
visual entropy ratio to stimulate textually-enhanced outputs
to avoid double queries while extracting language bias.

Attention Head Selection Using Text-to-Visual En-
tropy Ratio. Suppose a token is generated at time step t,
and the initial hidden states input to the Transformer de-
coder for this token is H0

t . For layer ℓ, the input hidden
states can be denoted as Hℓ

t . We distinguish between text

and visual attention within the attention matrix by comput-
ing the raw attention scores aℓ,i for each head:

aℓ,i = softmax(Qℓ,i ·K⊤
ℓ,i/
√

dk), (7)

where Qℓ,i and Kℓ,i are the query and key matrices for head
i in layer ℓ. To isolate text and visual attentions, we utilize
indices corresponding to textual or visual tokens:

aTℓ,i = {aℓ,i,j | j ∈ indicesT }, aVℓ,i = {aℓ,i,j | j ∈ indicesV},
(8)

where indicesT and indicesV specify positions of textual
and visual tokens, respectively. The entropy for these at-
tention sets is computed as follows:

Entropy(aTℓ,i) = −
∑
k

pTℓ,i,k log p
T
ℓ,i,k,

Entropy(aVℓ,i) = −
∑
k

pVℓ,i,k log p
V
ℓ,i,k, (9)

where pTℓ,i,k and pVℓ,i,k represent the normalized attention
probabilities, computed from the softmax of each subset:

pTℓ,i,k = softmax(aTℓ,i,k), p
V
ℓ,i,k = softmax(aVℓ,i,k). (10)

The Text-to-Visual Entropy Ratio (TVER) for each atten-
tion head is calculated as:

TVERℓ,i =
Entropy(aTℓ,i)

Entropy(aVℓ,i)
. (11)

To optimize the attention output for enhanced textual rel-
evance while reducing visual information, we selectively
deactivate heads with a TVER below the average for that
layer, setting their attention weights to zero. This approach
prioritizes heads with relatively higher text-to-visual en-
tropy ratios, providing a clue where uncertainty in the tex-
tual modality is higher:

ãℓ,i =

{
aℓ,i, if TVERℓ,i ≥ average(TVERℓ),

0, otherwise.
(12)

With this, we obtain the output of the Textual-Enhanced
Multi-Head Attention (TE-MHA) module:

TE-MHAℓ(Hℓ
t) =

Concat(ãℓ,1Vl,1, ãℓ,2Vl,2, . . . , ãℓ,HVl,H)WO
ℓ . (13)

3.3. Adaptive Decoding
In this section, we utilize the logits obtained from

textual-enhanced attention outputs for adaptive decoding.
Suppose layer ℓ̃ ∈ {0, 1, · · · , L − 1} is the selected

layer for textual enhancement, where we calculate a textual-
enhanced attention output as discussed in Eq. 13. To ensure



Figure 4. Text-to-visual entropy ratio is correlated with hal-
lucinations. (Left) Density plot of token-wise average textual-to-
visual entropy ratio and bar plot of average CHAIRI in each bin
on the CHAIR benchmark; (Right) Density plots of token-level
Manhattan distance between original and textual-enhanced logits
for both hallucinatory and non-hallucinatory tokens on POPE.

that the output logits do not deviate excessively from the
original LVLM outputs, we implement two residual con-
nections. These connections are defined as follows:

H̃ℓ̃
t = TE-MHAℓ̃(H

ℓ̃
t), (14)

¯̃HL−1
t = H̃ℓ̃

t +HL−1
t , (15)

ĤL
t = MLPL−1(

¯̃HL−1
t ) + ¯̃HL−1

t . (16)

Finally, the textual-enhanced predicted probability can be
obtained by:

p̃θ(yt|v,x,y<t) = softmax(f̃θ(yt|v,x,y<t))yt

= softmax(ϕ(ĤL
t ))yt

. (17)

To adaptively contrast the original and textual-enhanced
logits, we measure the Manhattan distance between the two
probability distributions at each timestep t:

dt =
∑
yt∈S
|pθ(yt|v,x,y<t)− p̃θ(yt|v,x,y<t)|, (18)

where dt provides a measure of the difference between the
distributions. Based on this distance, we adjust the original
logits either collaboratively or contrastively:

yt ∼ pθ(yt) = softmax
(
ffinal
θ

)
(19)

ffinal
θ =


fθ(yt|v,x,y<t) + α1 f̃θ(yt|v,x,y<t),

if dt < γ (collaborative);

(1 + α2) fθ(yt|v,x,y<t)− α2 f̃θ(yt|v,x,y<t),

if dt ≥ γ (contrastive),
(20)

where γ is a predefined threshold that determines the de-
coding strategy based on the measured distance.

Effectiveness of text-to-visual entropy ratio for tex-
tual information enhancement. We further conduct an
empirical study to validate the effectiveness of applying
text-to-visual entropy ratio for language bias reflection, as
shown in Figure 4. The experimental results demonstrate
that the entropy ratio is strongly correlated to the halluci-
nation level at both the response and token levels.

4. Experiments
In this section, we evaluate the effectiveness of our

method in mitigating hallucinations in LVLMs across a
range of benchmarking scenarios, comparing it with exist-
ing state-of-the-art approaches.

4.1. Experimental Settings
Evaluated LVLMs. We evaluate the effectiveness of

our method on three state-of-the-art open-source LVLMs:
LLaVA-1.5 [22], InstructBLIP [10] and Qwen-VL [1].

Benchmarks. We conduct extensive experiments on
six benchmarks: (1) POPE [19] is a benchmark com-
monly used to assess object hallucinations in LVLMs,
which evaluates model accuracy through yes-or-no ques-
tions about the presence of specific objects in images; (2)
CHAIR [27] evaluates object hallucinations through im-
age captioning, where the LVLMs are prompted to describe
500 randomly selected images from the MSCOCO valida-
tion set; (3) MME-Hallucination [12] is a comprehensive
benchmark for LVLMs consisting of four subsets: existence
and count for object-level hallucinations, and position and
color for attribute-level hallucinations; (4) MMBench [25]
is a benchmark for evaluating LVLMs’ multi-modal un-
derstanding ability across 20 dimensions; (5) MMVP [31]
comprises 150 CLIP-blind image pairs, each paired with a
binary-option question to evaluate the fine-grained visual
recognition capabilities of LVLMs; (6) MM-Vet [37] uti-
lizes LLM-based evaluator to evaluate LVLMs on 6 ca-
pabilities, including recognition, OCR, knowledge, lan-
guage generation, spatial awareness, and math; (7) LLaVA-
Bench provides 24 images in complex scenes, memes, and
sketches, along with 60 challenging questions.

Baselines. We compare the performance of our ONLY
approach with the following state-of-the-art approaches:
VCD [16], M3ID [11], Woodpecker [36], HALC [7],
DoLa [9] and OPERA [13]. We apply sampling-based de-
coding in default, where the next token is sampled directly
from the post-softmax probability distribution.

Implementation Details. We follow the default query
format for all LVLMs. Besides, we set α1 = 3, α2 = 1,
and γ = 0.2 for LLaVA-1.5 [22], and γ = 0.4 for
InstructBLIP [10] / Qwen-VL [1]. Following VCD [16],
we implement adaptive plausibility constraints [18] with
β = 0.1 across all tasks. All experiments are performed on
a single 48GB NVIDIA RTX 6000 Ada GPU.



Setup Method
LLaVA-1.5 InstructBLIP Qwen-VL

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

Random

Regular 83.13 81.94 85.00 83.44 83.07 83.02 83.13 83.08 85.23 97.23 72.53 83.09
VCD 87.00 86.13 88.20 87.15 86.23 88.14 83.73 85.88 87.03 97.36 76.13 85.45
M3ID 87.50 87.38 87.67 87.52 86.67 88.09 84.80 86.41 86.40 98.23 74.13 84.50
Ours 89.70 89.95 88.27 89.10 89.23 91.83 86.13 88.89 88.90 98.52 79.27 87.85

Popular

Regular 81.17 78.28 86.27 82.08 77.00 73.82 83.67 78.44 84.53 94.50 73.33 82.58
VCD 83.10 79.96 88.33 83.94 80.07 77.67 84.40 80.89 85.87 94.98 75.73 84.27
M3ID 84.30 81.58 88.60 84.95 80.97 77.93 86.40 81.85 86.07 96.56 74.80 84.30
Ours 86.00 84.44 88.27 86.31 83.27 81.46 86.13 83.73 87.47 95.63 79.48 86.81

Adversarial

Regular 77.43 73.31 86.27 79.26 74.60 71.26 82.47 76.45 83.37 91.47 73.60 81.57
VCD 77.17 72.18 88.40 79.47 77.20 74.29 83.20 78.49 83.73 89.84 76.07 82.38
M3ID 78.23 73.51 88.27 80.22 77.47 73.68 85.47 79.14 83.37 91.19 73.87 81.62
Ours 79.40 75.00 88.20 81.07 80.10 76.89 86.07 81.22 83.80 92.33 76.14 83.46

A
-O

K
V

Q
A

Random

Regular 81.90 76.63 91.80 83.53 80.63 76.82 87.73 81.92 86.40 94.32 77.47 85.07
VCD 83.83 78.05 94.13 85.34 84.20 80.90 89.53 85.00 87.93 94.59 80.47 86.96
M3ID 84.67 79.25 93.93 85.97 85.43 81.77 91.20 86.23 87.50 95.33 78.87 86.32
Ours 86.07 80.91 94.40 87.14 88.57 86.13 91.93 88.94 89.47 95.34 83.84 89.22

Popular

Regular 75.07 68.58 92.53 78.77 75.17 70.15 87.60 77.91 85.77 92.82 77.53 84.49
VCD 76.63 69.59 94.60 80.19 78.63 73.53 89.47 80.72 87.33 93.68 80.07 86.34
M3ID 77.80 70.98 94.07 80.91 78.80 73.38 90.40 81.00 87.37 95.31 78.60 86.15
Ours 79.00 72.17 94.40 81.80 80.83 75.23 91.93 82.75 89.47 94.77 84.43 89.30

Adversarial

Regular 67.23 61.56 91.80 73.70 69.87 64.54 88.20 74.54 80.37 82.56 77.00 79.68
VCD 67.40 61.39 93.80 74.21 71.00 65.41 89.13 75.45 81.90 83.07 80.13 81.57
M3ID 68.60 62.22 94.73 75.11 70.10 64.28 90.47 75.16 81.90 84.25 78.47 81.26
Ours 68.70 62.35 94.40 75.70 72.47 66.19 91.87 76.94 82.07 85.02 81.09 83.01

G
Q

A

Random

Regular 82.23 76.32 93.47 84.03 79.67 76.05 86.60 80.99 85.10 91.42 77.47 83.87
VCD 83.23 76.73 95.40 85.05 82.83 80.16 87.27 83.56 87.00 92.11 80.93 86.16
M3ID 84.20 78.00 95.27 85.77 83.07 80.06 88.07 83.87 87.07 92.64 80.53 86.16
Ours 86.70 80.94 96.00 87.83 86.17 83.84 89.60 86.63 88.03 93.59 82.68 87.80

Popular

Regular 73.47 66.83 93.20 77.84 73.33 68.72 85.67 76.26 80.87 82.65 78.13 80.33
VCD 72.37 65.27 95.60 77.58 76.13 71.10 88.07 78.68 82.53 83.52 81.07 82.27
M3ID 73.87 66.70 95.33 78.49 75.17 69.94 88.27 78.04 82.68 83.74 80.85 82.27
Ours 74.03 66.70 96.00 78.71 77.20 71.79 89.60 79.72 82.87 83.88 82.55 83.21

Adversarial

Regular 68.60 62.43 93.40 74.84 68.60 63.94 85.33 73.10 78.77 79.33 77.80 78.56
VCD 68.83 62.26 95.67 75.43 71.00 65.75 87.67 75.14 81.17 81.48 80.67 81.07
M3ID 68.67 62.16 95.40 75.28 71.17 65.79 88.20 75.36 81.90 83.07 80.13 81.57
Ours 69.23 62.55 95.87 75.70 71.93 65.98 87.93 75.84 81.33 82.38 81.50 81.94

Table 1. Results on POPE [19] benchmark. Higher (↑) accuracy, precision, recall, and F1 indicate better performance. The best results
are bolded, and the second-best are underlined.

Method
LLaVA-1.5 InstructBLIP Qwen-VL

Max Token 64 Max Token 128 Max Token 64 Max Token 128 Max Token 64 Max Token 128

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Regular 26.2 9.4 55.0 16.3 31.2 11.1 57.0 17.6 33.6 12.9 52.0 16.5
VCD 24.4 7.9 54.4 16.6 30.0 10.1 60.4 17.8 33.0 12.8 50.2 16.8
M3ID 21.4 6.3 56.6 15.7 30.8 10.4 62.2 18.1 32.2 11.5 49.5 17.2
Woodpecker 24.9 7.5 57.6 16.7 31.2 10.8 60.8 17.6 31.1 12.3 51.8 16.3
HALC 21.7 7.1 51.0 14.8 24.5 8.0 53.8 15.7 28.2 9.1 49.6 15.4
Ours 20.0 6.2 49.8 14.3 23.5 8.2 52.2 15.5 27.3 8.4 48.0 14.3

Table 2. Results on CHAIR [27] benchmark. We limit the maximum number of new tokens to 64 or 128. Lower (↓) CHAIRS , CHAIRI

indicate better performance. The best results in each setting are bolded, and the second-best are underlined.



Method
Object-level Attribute-level

MME Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

Regular 173.75 121.67 117.92 149.17 562.50
DoLa 176.67 113.33 90.55 141.67 522.22
OPERA 183.33 137.22 122.78 155.00 598.33
VCD 186.67 125.56 128.89 139.45 580.56
M3ID 186.67 128.33 131.67 151.67 598.11
Woodpecker 187.50 125.00 126.66 149.17 588.33
HALC 183.33 133.33 107.92 155.00 579.58
Ours 191.67 145.55 136.66 161.66 635.55

Table 3. Results on MME-Hallucination [12] with LLaVA-
1.5 [22]. We report the average MME scores for each subset.
Higher scores (↑) indicate better performance. The best results
are bolded, and the second-best are underlined.

4.2. Results and Discussions
Results on POPE. In Table 1, we compare our method’s

performance against various baselines on the POPE bench-
mark. As shown in the table, our approach consistently
outperforms previous state-of-the-art methods across
various LVLM models and settings, demonstrating its ro-
bustness across different evaluation scenarios. Specifically,
in the MS-COCO (Random) setting with the LLaVA-1.5
backbone, our method surpasses VCD by 2.20% and M3ID
by 1.70% in accuracy. Even in the more challenging
adversarial setting, our approach maintains its superior
performance, outperforming VCD by 2.23% and M3ID
by 1.17%. Overall, these consistent gains across different
datasets and LVLM models highlight the effectiveness
of our method as a strong and generalizable solution for
mitigating hallucinations in LVLMs.

Results on CHAIR. On the open-ended CHAIR bench-
mark, our ONLY method achieves superior performance
with lower hallucination rates. Table 2 presents a com-
parison against four state-of-the-art approaches, evaluating
hallucination rates with CHAIRS and CHAIRI under max-
imum token generation limits of 64 and 128 across three
LVLM backbones. Notably, in the LLaVA-1.5 (Max Token
= 128) setting, our approach reduces CHAIRS by 5.2 points
and CHAIRI by 2.0 points compared to regular decoding.

Results on MME. In Table 3, we compare our approach
against other methods on the MME benchmark. The results
show that our method consistently outperforms all base-
lines, achieving the highest scores across both object-level
(Existence, Count) and attribute-level (Position, Color)
evaluations. Notably, our method attains an MME score of
634.67, outperforming the second-best method, M3ID, by
36.34 points, demonstrating its superior capability in miti-
gating various types of hallucinations.

Results on MMVP. To evaluate the effectiveness of our
approach on fine-grained visual recognition tasks, we con-
duct experiments on the MMVP benchmark and present the
results in Figure 5. With our ONLY approach, the LVLM is
able to handle more nuanced visual recognition tasks, im-
proving the performance from 22.67% to 28.00%.

0 5 10 15 20 25
MMVP Accuracy (%)

MiniGPT-4

InstructBLIP

Bard

Random Guess

LLaVA-1.5

+ VCD

+ M3ID

+ Ours

12.67
16.67

19.00
25.00

22.67
24.67

23.33
28.00

Figure 5. Results on MMVP [31]. We apply our approach
to LLaVA-1.5 [22] and compare its performance against other
hallucination mitigation methods.

Method
LLaVA-1.5 InstructBLIP

Acc. ↑ Det. ↑ Acc. ↑ Det. ↑

Regular 6.07 6.20 5.26 5.53
Ours 7.00 7.13 6.60 6.73

VCD 4.60 5.13 4.87 5.33
Ours 6.27 6.60 6.80 6.93

M3ID 6.13 6.27 5.93 6.20
Ours 6.73 6.80 6.67 6.87

Table 4. GPT-4V-aided evaluation on LLaVA-Bench. Higher
accuracy and detailedness (↑) indicate better performance. The
evaluation is performed on LLaVA-1.5 [22].

Results on MMBench and MMVet. We also report the
performance of all compared methods on the MMBench
and MMVet benchmarks in Table 5. Our approach contin-
ues to outperform existing state-of-the-art methods, demon-
strating that it also enhances the general multi-modal under-
standing capabilities of LVLMs.

Results on LLaVA-Bench. In Figure 6, we present
a case study on LLaVA-Bench comparing our method’s
response with the response generated by regular decoding
using the LLaVA-1.5 model. Specifically, regular decoding
often leads to hallucinated or inaccurate content, such
as describing “taxi appears to be converted
laundry machines” and “another person can
be seen standing nearby”. In contrast, our
response is more detailed, focusing on the fact that “a
person is ironing clothes while on the
move, which is an unconventional way”.
The GPT-4V-aided evaluation in Table 4 further vali-
dates that our method improves both the accuracy and
detailedness of generated responses.

4.3. Efficiency Comparison
In Table 5, we evaluate the efficiency of our approach us-

ing the LLaVA-1.5 model on the CHAIR benchmark, with
a maximum token length of 128. We also report the perfor-
mance of all compared methods across 5 benchmarks. Our
approach demonstrates consistently superior performance,
with only a 1.07× increase in time consumption and negli-
gible additional GPU memory usage. These results validate
that our approach is both efficient and effective, offering a



Method Avg. Latency ↓ GPU Memory ↓ CHAIRS ↓ MME ↑ POPE ↑ MMBench ↑ MM-Vet ↑

Regular 3.47 s (×1.00) 14945 MB (×1.00) 55.0 562.5 83.44 64.1 26.1
VCD 6.97 s (×2.01) 15749 MB (×1.05) 54.4 580.6 87.15 64.6 30.9
M3ID 7.05 s (×2.03) 15575 MB (×1.04) 54.4 598.1 87.52 64.4 29.9
OPERA 24.70 s (×7.12) 22706 MB (×1.52) 52.6 598.3 88.85 64.4 32.0
Woodpecker 10.68 s (×3.08) 22199 MB (×1.49) 57.6 588.3 86.45 64.0 30.6
HALC 22.61 s (×6.52) 23084 MB (×1.54) 51.0 579.6 87.68 64.2 30.8
Ours 3.70 s (×1.07) 14951 MB (×1.00) 49.8 635.6 89.10 65.0 32.8

Table 5. Efficiency comparison. For each method, we present the average inference latency per instance and peak GPU memory. Experi-
ments are conducted on a single RTX A6000 Ada GPU.

Figure 6. Case study on the LLaVA-Bench benchmark. We
compare the responses generated by regular decoding and our
method using LLaVA-1.5. GPT-4V-aided evaluation results are
also provided alongside the responses. Hallucinated and accurate
content is highlighted in red and blue.

favorable performance-cost trade-off.

4.4. Ablation Study

Selection of Layer for Textual Enhancement. To in-
vestigate the impacts of choosing different layers for tex-
tual enhancement, we conduct ablation experiments on the
POPE benchmark. Results in Figure 7 demonstrate that
by selecting the initial layer for textual enhancement, our
ONLY method achieves optimal performance on the POPE
benchmark. Additionally, we observe that the performance
of our approach is robust across different layers chosen for
intervention, with ONLY exhibiting minimal variation and
consistently outperforming VCD and M3ID. This robust-
ness is due to our attention-head selection strategy, which
dynamically selects different sets of heads across multiple
layers, efficiently and effectively capturing language bias.

Other Strategies for Textual Enhancement. In Ta-
ble 6, we compare the performance achieved by various
textual enhancement strategies. Our approach of attention
head selection using TVER achieves the best performance.
In contrast, directly modifying attention weights—such as
zeroing out or adding noise to visual attention weights, or
doubling textual attention weights—results in suboptimal
outcomes. Additionally, selecting attention heads based on
the ratio of the sum of attention weights also leads to a per-
formance decrease of 0.71% on POPE and 3.1% on CHAIR.

Figure 7. Impacts of different selected layers. We present the re-
sults obtained by selecting different layers for textual enhancement
on the POPE benchmark using all 9,000 samples from COCO.

Strategy
POPE ↑ CHAIR ↓

Acc. Prec. Rec. F1 CHAIRS CHAIRI

Regular 80.42 78.20 84.59 81.27 26.2 9.4
aVℓ,i ← 0 84.26 82.13 87.69 84.82 21.2 6.9
aVℓ,i ← aVℓ,i + ε 83.95 81.67 88.16 84.79 22.1 7.6
aTℓ,i ← aTℓ,i ∗ 2 84.37 82.52 87.55 84.96 21.6 6.8
Ratio←

∑
aT /

∑
aV 84.20 81.57 87.56 84.46 23.1 8.2

Ours 84.91 82.84 88.07 85.37 20.0 6.2

Table 6. Different Strategies for textual enhancement. We con-
duct experiments with different textual enhancement strategies.

5. Conclusion
In this work, we introduce ONLY, a novel training-

free approach that leverages a single additional Trans-
former layer to mitigate hallucinations in Large Vision-
Language Models (LVLMs). By utilizing text-to-visual
entropy, ONLY selectively activates attention heads with
a high language bias to generate textually-enhanced out-
puts. These outputs are then adaptively decoded alongside
the original output, using either contrastive or collabora-
tive decoding. Extensive evaluations across six benchmarks
and three LVLM backbones show that ONLY consistently
outperforms existing methods in reducing hallucinations.
Moreover, our approach incurs minimal additional infer-
ence time and memory consumption, making it well-suited
for real-world applications that require real-time responses.
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ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in
Large Vision-Language Models

Supplementary Material

This supplementary document is organized as follows:

• The intuitive and theoretical explanation for our motiva-
tion is provided in Section A.

• Additional experimental details, including further im-
plementation details, descriptions of other implemented
baselines, and license information for the utilized code
and datasets, are provided in Section B.

• Additional experimental results on different bench-
marks are presented in Section C.

• Additional ablation studies with different parameters are
presented in Section D.

• More case studies and GPT-4V-aided evaluations are
provided in Section E.

• Potential directions for future work are discussed in Sec-
tion F.

A. More Explanation on Motivation
A.1. Intuitive Explanation for TVER

Our method is motivated by a principle in information
theory: H(x|y)≤H(x). Let H(T ) and H(V) denote the
entropy of pure textual and visual attention, respectively.
During LVLM decoding, since the model processes both
image and text simultaneously, we treat the attention dis-
tributions as conditioned on the other modality. This leads
to an approximate theoretical form of Eq. (11): TVER =
H(T |V)
H(V|T ) . Since H(T |V) ≤H(T ) and H(V|T ) ≤H(V), a
higher H(T |V) indicates behavior closer to purely textual
inference, while higher H(V|T ) suggests reliance on visual
priors. To approximate the noisy branch used in VCD and
M3ID, we aim to enhance textual focus and suppress vi-
sual focus, which motivates maximizing TVER for effec-
tive textual enhancement.

B. More Experimental Details
B.1. Benchmarks and Metrics

We conduct extensive experiments on the following
benchmarks:
• POPE [19] is a popular benchmark for assessing object

hallucinations in LVLMs. It tests the models with
yes-or-no questions regarding the presence of specific
objects, such as, “Is there a {object} in the
image?” The images from the benchmark derive from
three existing datasets: MSCOCO [20], A-OKVQA [28],

and GQA [14], and comprises three distinct sub-
sets—random, popular, and adversarial—based on how
the negative samples are generated. For each dataset
setting, the benchmark provides 6 questions per image,
resulting in 3,000 test instances. We evaluate the perfor-
mance of different methods using four metrics: accuracy,
precision, recall, and F1 score.

• CHAIR [27] evaluates object hallucinations through
image captioning, where the LVLMs are prompted
to describe 500 randomly selected images from the
MSCOCO validation set. The performance is evaluated
based on two metrics:

CHAIRI =
# hallucinated objects

# all objects mentioned
, (21)

CHAIRS =
# sentences with hallucinated object

# all sentences
. (22)

• MME-Hallucination [12] is a comprehensive bench-
mark consisting of four subsets: existence and count for
object-level hallucinations, and position and color for
attribute-level hallucinations. Each subset includes 30
images and 60 questions, with two questions per image.
Similar to POPE [19], the benchmark includes yes-or-no
questions, and performance is assessed based on binary
accuracy. Following the official implementation, the
reported score is calculated by combining accuracy
and accuracy+, where accuracy is based on individual
questions, and accuracy+ is based on images where both
questions are answered correctly.

• MMBench [25] is a comprehensive benchmark designed
to evaluate LVLMs’ multimodal understanding and
reasoning abilities. It emphasizes tasks that require
integrating visual and textual information, assessing a
model’s performance in diverse, real-world scenarios.
MMBench employs a hierarchical ability taxonomy,
categorizing Perception and Reasoning as Level-1 (L-1)
abilities. This taxonomy is further refined into six Level-
2 (L-2) dimensions and twenty Level-3 (L-3) dimensions,
providing a detailed framework for assessment.

• MMVP [31] is a benchmark designed to assess the
fine-grained visual recognition capabilities of LVLMs
using CLIP-blind pairs. It comprises 150 image pairs,
each paired with a binary-option question. Each image is
evaluated separately, and an LVLM’s response is deemed
correct only if it answers both questions associated with
a pair accurately.

• MM-Vet [37] is a benchmark for evaluating LVLMs on
complex tasks. It defines 6 core vision-language capabil-



ities, including recognition, OCR, knowledge, language
generation, spatial awareness, and math. An LLM-based
evaluator is used to ensure consistent evaluation across
diverse question types. The dataset includes 187 images
from various online sources and collects 205 questions,
each of which requires one or more capabilities to answer.

• LLaVA-Bench1 includes 24 images depicting complex
scenes, memes, paintings, and sketches, accompanied by
60 challenging questions. Selected examples from this
dataset are used for qualitative comparisons of responses
generated by different decoding methods. Additionally,
following Yin et al. [36], we evaluate the accuracy
and level of detail in the generated responses using the
advanced LVLM, GPT-4V2.

B.2. More Implementation Details
In our experiments, we adhere to the default query for-

mat for the input data used in both LLaVA-1.5 [21], In-
structBLIP [10], and Qwen-VL [1]. We set α1 = 3,
α2 = 1 by default in our decoding process. Addition-
ally, we set γ = 0.2 for LLaVA-1.5 and γ = 0.4 for
InstructBLIP/Qwen-VL. We follow VCD [16] to implement
adaptive plausibility constraints [18]:

pθ(yt) = 0, if yt /∈ S(y<t), (23)

where S(y<t) = {yt ∈ S : pθ(yt|v,x,y<t) ≥
βmaxw pθ(w|v,x,y<t)}. Here, S is the whole vocabu-
lary of LVLM, and hyperparameter β ∈ [0, 1] controls the
truncation of the next token distribution. A larger β indi-
cates more aggressive truncation, keeping only the high-
probability tokens. In our implementation, we set the logits
for yt /∈ S(y<t) to −∞. By default, we set β = 0.1 for
all tasks. All experiments are conducted on a single 48GB
NVIDIA RTX 6000 Ada GPU.

B.3. Pilot Study Details
For Figure 4, we visualize 500 images from the

CHAIR [27] benchmark (left) and 3,000 images from
POPE [19] (right). For Figure 3, we analyze 3,000 POPE
images to examine the relationship between entropy devia-
tion and noise level.

B.4. Devision of Textual and Visual Tokens
In Eq. 8, textual and visual attention are obtained based

on the indices corresponding to each modality. The index
ranges for both modalities are listed below:
• LLaVA-1.5 [21]:

Textual indices – [0:35], [611:]; Visual indices – [35:611].
• InstructBLIP [10]:

Textual indices – [32:]; Visual indices – [0:32].
1https : / / huggingface . co / datasets / liuhaotian /

llava-bench-in-the-wild.
2https://openai.com/index/gpt-4v-system-card.

• Qwen-VL[1]:
Textual indices – [257:]; Visual indices – [1:257].

B.5. Details of Other Baselines

In this work, we mainly compare the performance of
our ONLY with two state-of-the-art contrastive-decoding
approaches: VCD [16] and M3ID [11]. The method and
implementation details for these approaches are provided
below:
• VCD [16] contrasts output distributions derived from

original and distorted visual inputs. Specifically, given
a textual query x and a visual input v, the model gener-
ates two distinct output distributions: one conditioned on
the original v and the other conditioned on the distorted
visual input v′, which is obtained by applying pre-defined
distortions (e.g., Gaussian noise mask) to v. Then, a new
contrastive probability distribution is computed as:

pvcd (yt) = softmax[(1 + α)fθ (y|v,x,y<t)−
αfθ (y|v′,x,y<t)]. (24)

In our implementation, we follow the default setting in
VCD [16] and set α = 1 for reproduction. To generate v′,
we use a total of 500 noise steps.

• M3ID [11] contrasts output distributions derived from
original visual inputs with those from pure text inputs,
which lack visual information. The final probability dis-
tribution is given by:

pm3id (yt) = softmax[fθ (y|v,x,y<t)+

1− e−λt

e−λt
(fθ (y|v,x,y<t)− fθ (y|x,y<t))]. (25)

Following their recommended best practice, we set the
hyperparameter λ, which balances the conditioned and
unconditioned models, to 0.02.

B.6. Dataset and Code Licensing

Datasets. We list the known license information for
the datasets below: POPE [19] and MMVP [31] bench-
marks are licensed under MIT License. CHAIR [27] is
made available under the BSD 2-Clause License. LLaVA-
Bench is available under Apache-2.0 License. MME-
Hallucination [12] benchmark dataset is collected by Xia-
men University for academic research only. MM-Vet [37]
dataset is under the CC BY-NC 4.0 license.

Code. In this work, we also use some code imple-
mentations from the existing codebases: LLaVA [21] and
VCD [16] are licensed under the Apache-2.0 License. In-
structBLIP [10] is under BSD-3-Clause License. Qwen-
VL [1] is under the Tongyi Qianwen License.

https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
https://openai.com/index/gpt-4v-system-card


Table C1. Results on MME-Hallucination [12] benchmark. We report the average MME scores along with the standard deviation
across three random seeds for each subset. We also report the total scores achieved by the different methods across all four subsets in the
final column. Higher scores (↑) indicate better performance. The best results are bolded, and the second-best are underlined.

Model Method
Object-level Attribute-level

Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5

Regular 173.75 (±4.79) 121.67 (±12.47) 117.92 (±3.69) 149.17 (±7.51) 562.50 (±3.96)

DoLa 176.67 (±2.89) 113.33 (±10.41) 90.55 (±8.22) 141.67 (±7.64) 522.22 (±16.78)

OPERA 183.33 (±6.45) 137.22 (±6.31) 122.78 (±2.55) 155.00 (±5.00) 598.33 (±10.41)

VCD 186.67 (±5.77) 125.56 (±3.47) 128.89 (±6.73) 139.45 (±12.51) 580.56 (±15.13)

M3ID 186.67 (±5.77) 128.33 (±10.41) 131.67 (±5.00) 151.67 (±20.88) 598.11 (±20.35)

Woodpecker 187.50 (±2.89) 125.00 (±0.00) 126.66 (±2.89) 149.17 (±17.34) 588.33 (±10.00)

HALC 183.33 (±0.00) 133.33 (±5.77) 107.92 (±3.69) 155.00 (±5.00) 579.58 (±9.07)

Ours 191.67 (±2.89) 145.55 (±10.72) 136.66 (±2.89) 161.66 (±2.89) 635.55 (±5.85)

InstructBLIP

Regular 160.42 (±5.16) 79.17 (±8.22) 79.58 (±8.54) 130.42 (±17.34) 449.58 (±24.09)

DoLa 175.00 (±5.00) 55.00 (±5.00) 48.89 (±3.47) 113.33 (±6.67) 392.22 (±7.88)

OPERA 175.00 (±3.33) 61.11 (±3.47) 53.89 (±1.92) 120.55 (±2.55) 410.56 (±9.07)

VCD 158.89 (±5.85) 91.67 (±18.34) 66.11 (±9.76) 121.67 (±12.58) 438.33 (±16.07)

M3ID 160.00 (±5.00) 87.22 (±22.63) 69.44 (±9.18) 125.00 (±7.64) 441.67 (±17.32)

Ours 180.00 (±5.00) 77.78 (±7.70) 74.44 (±12.05) 135.55 (±3.85) 467.77 (±8.55)

Qwen-VL

Regular 155.00 (±3.54) 127.67 (±13.36) 131.67 (±7.73) 173.00 (±9.75) 587.33 (±31.06)

VCD 156.00 (±6.52) 131.00 (±6.19) 128.00 (±3.61) 181.67 (±5.14) 596.67 (±11.61)

M3ID 178.33 (±2.89) 143.33 (±2.89) 150.00 (±2.89) 175.00 (±5.00) 646.66 (±8.50)

Ours 180.00 (±5.00) 146.67 (±5.00) 156.11 (±6.31) 178.33 (±2.89) 661.11 (±3.47)

Method LR AR RR FP-S FP-C CP Overall

Regular 30.51 71.36 52.17 67.58 58.74 76.35 64.09
VCD 30.51 73.37 53.04 67.92 57.34 77.03 64.60
M3ID 30.51 72.36 53.04 67.58 57.34 77.36 64.43
Ours 33.05 73.37 54.78 66.55 58.74 77.36 64.95

Table C2. Detailed results on MMBench benchmark. Abbrevi-
ations adopted: LR for Logical Reasoning; AR for Attribute Rea-
soning; RR for Relation Reasoning; FP-S for Fine-grained Percep-
tion (Single Instance); FP-C for Fine-grained Perception (Cross
Instance); CP for Coarse Perception. The best results are bolded.

C. More Experimental Results and Analysis
C.1. Full Results on MME-Hallucination

In Table C1, we present the full results on the MME-
Hallucination benchmark. From the results, our method
consistently outperforms others on both object-level and
attribute-level data across three LVLM backbones.

C.2. Full Results on MMBench
In Table C2, we present the overall performance on the

MMBench benchmark, as well as the detailed performance
across six Level-2 abilities: Logical Reasoning (LR), At-
tribute Reasoning (AR), Relation Reasoning (RR), Fine-
grained Perception - Single Instance (FP-S), Fine-grained

Method Rec OCR Know Gen Spat Math Total

Regular 30.8 19.0 14.5 17.9 26.9 11.5 26.1
VCD 35.6 21.9 18.3 21.9 28.9 3.8 30.9
M3ID 35.0 19.7 18.8 19.0 26.0 7.7 29.9
DoLA 37.2 22.1 17.9 21.0 26.3 7.7 31.7
OPERA 35.4 25.6 20.5 22.9 30.9 11.5 32.0
HALC 36.2 21.5 17.5 20.1 23.5 7.7 30.8
Ours 37.3 23.9 22.9 22.1 31.3 3.8 32.8

Table C3. Detailed results on MM-Vet benchmark. Abbrevi-
ations adopted: Rec for Recognition, OCR for Optical Character
Recognition, Know for Knowledge, Gen for Language Genera-
tion, Spat for Spatial Awareness, Math for Mathematics. The best
results are bolded, and the second best are underlined.

Perception - Cross Instance (FP-C), and Coarse Perception
(CP). We follow VCD [16] to conduct experiments on the
MMBench-dev set. Our method outperforms other base-
lines in most abilities and the overall score.

C.3. Results on MM-Vet
In Table C3, we present the overall performance on the

MM-Vet [37] benchmark, where we use LLaVA-1.5 as the
LVLM backbone. From the results, we observed that our
method consistently outperforms others on the MM-Vet
benchmark.



C.4. Evaluation on other advanced LVLMs
We further report results of LLaVA-NeXT-7B/13B [23]

on POPE (MS-COCO) benchmark in table C4. Our method
consistently outperforms existing approaches at both scales
while requiring only half the inference time and resources.

Method
LLaVA-NeXT-7B LLaVA-NeXT-13B

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Regular 85.71 85.27 86.33 85.80 86.74 86.53 87.04 86.78
VCD 87.07 87.40 86.62 87.01 87.09 87.39 86.69 87.04
M3ID 87.48 87.64 87.27 87.45 87.84 87.95 87.71 87.83
Ours 87.96 88.59 87.13 87.86 87.94 87.31 88.80 88.05

Table C4. Detailed results with LLaVA-NeXT. The best results
are bolded, and the second best are underlined.

D. More Ablation Studies and Analysis
D.1. Effects of α1 and α2 in Adaptive Decoding

In Section 3, we introduce collaborative and contrastive
decoding, along with hyperparameters α1 and α2, which
regulate the influence of the textual-enhanced branch. Ta-
bles D5 and D6 analyze their impact, showing that the de-
fault values α1 = 3 and α2 = 1 yield the best perfor-
mance across benchmarks. Notably, setting these to 0 re-
duces our approach to standard decoding, confirming that
adaptive decoding significantly enhances hallucination mit-
igation in LVLMs.

D.2. Effect of β in Adaptive Plausibility Constraint
We perform an ablation study on β, introduced in Eq. 23,

by varying its value from 0 to 0.5 while keeping all other hy-
perparameters fixed. As shown in Table D7, setting β = 0,
which removes the constraint, leads to suboptimal perfor-
mance across both benchmarks. Our method achieves the
best results with β = 0.1, which we adopt as the default
setting.

D.3. Effect of γ in Adaptive Plausibility Constraint
We further studied the influence led by the threshold γ

for adaptive decoding. The results in Table D8 show that
setting γ = 0.2 reaches the optimal result for LLaVA-1.5.
Besides, we keep γ = 0.4 for other baseline LVLMs.

D.4. Scaling Up the LVLMs
We extend our evaluation to the 13B variant of the

LLaVA-1.5 model to assess the scalability of our approach.
Table D9 compares our results with state-of-the-art methods
across all three subsets of the POPE benchmark using the
13B model. Our findings show that increasing model size
does not mitigate hallucination issues, as the 7B and 13B
models exhibit comparable performance. Notably, ONLY
consistently outperforms other approaches across all sub-
sets, demonstrating its effectiveness and scalability.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α1 = 0 88.13 94.55 80.93 87.21 23.5 8.6
α1 = 1 88.27 94.50 81.27 87.38 22.4 7.8
α1 = 2 88.87 89.63 88.10 88.86 21.5 7.2
α1 = 3 89.70 89.95 88.27 89.10 20.0 6.2
α1 = 4 88.37 88.85 87.94 88.39 22.3 7.6

Table D5. Sensitivity analysis of hyperparameter α1. We
present the performance of our approach, based on the LLaVA-
1.5 backbone, across two benchmarks for varying values of α1.
Note that we fix α2 = 1 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α2 = 0 86.50 86.35 88.13 86.72 24.8 9.3
α2 = 1 89.70 89.95 88.27 89.10 20.0 6.2
α2 = 2 87.67 96.69 78.00 86.35 22.4 7.6
α2 = 3 87.37 97.14 77.00 85.91 23.4 7.3
α2 = 4 87.13 97.12 76.53 85.61 24.2 8.1

Table D6. Sensitivity analysis of hyperparameter α2. We
present the performance of our approach, based on the LLaVA-
1.5 backbone, across two benchmarks for varying values of α1.
Note that we fix α1 = 3 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

β = 0 87.70 93.40 81.13 86.84 24.6 10.1
β = 0.05 88.17 94.21 81.33 87.30 23.7 9.6
β = 0.1 89.70 89.95 88.27 89.10 20.0 6.2
β = 0.25 89.56 89.48 87.63 88.55 21.4 7.6
β = 0.5 89.47 89.83 86.53 88.15 22.1 7.2

Table D7. Sensitivity analysis of hyperparameter β. We present
the performance of our approach, based on the LLaVA-1.5 back-
bone, across two benchmarks for varying values of β.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

γ = 0.0 89.13 90.41 86.38 88.35 23.5 8.2
γ = 0.1 89.20 89.88 86.73 88.28 22.6 8.1
γ = 0.2 89.70 89.95 88.27 89.10 20.0 6.2
γ = 0.3 89.40 93.20 85.00 88.91 21.2 7.1
γ = 0.4 89.03 93.99 83.40 88.38 21.7 7.0
γ = 0.5 89.15 92.26 84.29 88.10 22.4 7.6
γ = 0.6 89.21 91.78 85.39 88.47 23.1 8.1

Table D8. Sensitivity analysis of hyperparameter γ. We present
the performance of our approach, based on the LLaVA-1.5 back-
bone, across two benchmarks for varying values of γ.

D.5. Details about Ablation Studies on Layer Selec-
tion and Strategies

In Section 4.4, we conduct two ablation studies to val-
idate our proposed method. Detailed results are provided



Table D9. Results on POPE [19] benchmark using 13B-sized
LLaVA-1.5. Higher (↑) accuracy, precision, recall, and F1 indi-
cate better performance.

Setup Method
LLaVA-1.5

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

Random

Regular 82.53 78.57 89.47 83.67
VCD 84.80 80.67 91.53 85.76
M3ID 85.37 81.30 91.87 86.26
Ours 88.63 89.66 87.33 88.48

Popular

Regular 80.53 76.17 88.87 82.03
VCD 82.23 76.88 92.20 83.84
M3ID 82.60 77.91 91.00 83.95
Ours 85.47 83.25 88.80 85.94

Adversarial

Regular 75.80 70.41 89.00 78.62
VCD 77.33 71.44 91.07 80.07
M3ID 77.43 71.65 90.80 80.09
Ours 80.63 76.33 88.80 82.10

below.
Selection of Layer for Textual Enhancement: In this

experiment, we select a single layer from the total of 32 lay-
ers for textual enhancement. The F1 scores for our method
across the 32 layers are as follows: [85.37, 85.20, 84.74,
84.7, 85.11, 84.68, 85.17, 84.69, 85.18, 84.73, 84.7, 84.74,
84.9, 84.94, 84.88, 85.06, 84.62, 84.67, 84.83, 85.15, 84.72,
84.76, 84.99, 85.03, 84.7, 84.93, 84.76, 84.9, 84.8, 85.12,
84.62, 84.76]. In comparison, the results for regular decod-
ing, VCD [16], and M3ID [11] are 81.27, 83.38, and 84.05,
respectively.

Other Strategies for Textual Enhancement: In Ta-
ble 6, we explore additional strategies for textual enhance-
ment, which include:

• aVℓ,i ← 0: Setting the visual attention in the attention ma-
trix to zero, inspired by M3ID [11], which uses a visual-
free input for contrastive decoding;

• aVℓ,i ← aVℓ,i + ε: Adding noise ε to the visual attention,
inspired by VCD [16], which uses a distorted visual input
for contrastive decoding;

• aTℓ,i ← aTℓ,i ∗ 2: Enhancing textual attention by directly
multiplying it by 2;

• Ratio ←
∑

aT /
∑

aV : Instead of using the text-to-
visual entropy ratio as the criterion to select textual-
enhanced heads, we use the ratio between the sum of
textual attention and visual attention. Heads with a ratio
lower than the average across all heads are masked out, as
described in Eq. 12.

All of these strategies require minimal additional compu-
tation, providing an efficiency advantage over other meth-
ods [11, 16]. This demonstrates the effectiveness of us-
ing just one layer for mitigating hallucinations in LVLMs,
rather than relying on an extra full-process inference.

E. More Case Studies
E.1. Details about GPT-4V-Aided Evaluation

Following VCD [16], we use GPT-4V to evaluate re-
sponses in open-ended generation scenarios, scoring them
based on accuracy and detailedness. Leveraging GPT-4V’s
strong human-like capabilities, it can detect incorrect col-
ors, positions, and relationships, allowing for a thorough
evaluation of the responses.

Specifically, we apply the prompt in Table E10 to instruct
GPT-4V to rate two responses on a scale from 1 to 10 for
both accuracy and detailedness:
• Accuracy measures the consistency between the re-

sponses/descriptions generated by the LVLMs and the
given image. A lower score is given if GPT-4V detects
any inconsistencies in the content.

• Detailedness evaluates the depth and specificity of the re-
sponses. A higher score is awarded if the response in-
cludes comprehensive descriptions, captures fine-grained
details of the image, and provides well-elaborated expla-
nations. Conversely, a lower score is given if the response
is vague or lacks sufficient detail.

E.2. More Qualitative Results
In Figure E1, we present additional case studies from

LLaVA-Bench to qualitatively demonstrate the effective-
ness of our methods in mitigating hallucinations. We also
include GPT-4V evaluations, providing accuracy and de-
tailedness scores for each instance.

F. Future Work
In future work, we aim to further improve the speed of

our method and develop a more efficient hallucination mit-
igation approach that surpasses the original LVLM speed,
leveraging efficient LVLM techniques like FastV [5]. Ad-
ditionally, we plan to explore our method’s potential for
video hallucination mitigation to demonstrate its adaptabil-
ity across various tasks.



Description:
AI that scores image description accuracy and detailedness.

Instructions:
You are an AI designed to evaluate and score the performance of two AI assistants in describing a given image. Your
primary focus is on the accuracy and detailedness of their descriptions. You will assess the accuracy by checking
for hallucinations - any part of the description that is inconsistent with the image content. For detailedness, you will
consider how rich the response is in necessary details, excluding any hallucinated parts. You will provide scores on
a scale from 1 to 10 for each assistant separately, based on these criteria. After scoring, you will offer an explanation
for your evaluation, ensuring it is free from bias and not influenced by the order of presentation of the responses.

Input format:

[Assistant 1]
{Response 1}
[End of Assistant 1]

[Assistant 2]
{Response 2}
[End of Assistant 2]

Output format:

Accuracy:
Scores of the two answers:
Reason:

Detailedness:
Scores of the two answers:
Reason:

Table E10. GPT-4V-aided evaluation setup. We present the prompt we provided to GPT-4V to evaluate the LVLM responses
based on accuracy and detailedness.



Figure E1. Case studies on the LLaVA-Bench benchmark. We
compare the responses generated by regular decoding and our
method using LLaVA-1.5. GPT-4V-aided evaluation results are
also provided alongside the responses. Hallucinated and accurate
content is highlighted in red and blue.
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